New Quaternary Linear Codes with Covering Radius 21

نویسنده

  • Alexander A. Davydov
چکیده

A new quaternary linear code of length 19, codimension 5, and covering radius 2 is found in a computer search using tabu search, a local search heuristic. Starting from this code, which has some useful partitioning properties, di!erent lengthening constructions are applied to get an in"nite family of new, record-breaking quaternary codes of covering radius 2 and odd codimension. An algebraic construction of covering codes over alphabets of even characteristic is also given. ( 2000 Academic Press

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Linear Codes with Covering Radius 2 and Odd Basis

On the way of generalizing recent results by Cock and the second author, it is shown that when the basis q is odd, BCH codes can be lengthened to obtain new codes with covering radius R = 2. These constructions (together with a lengthening construction by the first author) give new infinite families of linear covering codes with codimension r = 2k + 1 (the case q = 3, r = 4k + 1 was considered ...

متن کامل

On a family of binary completely transitive codes with growing covering radius

A new family of binary linear completely transitive (and, therefore, completely regular) codes is constructed. The covering radius of these codes is growing with the length of the code. In particular, for any integer ρ ≥ 2, there exist two codes with d = 3, covering radius ρ and length ( 4 ρ 2 )

متن کامل

Constructions of nonlinear covering codes

Constructions of nonlinear covering codes are given. Using any nonlinear starting code of covering radius R 2 these constructions form an infinite family of codes with the same covering radius. A nonlinear code is treated as a union of cosets of a linear code. New infinite families of nonlinear covering codes are obtained. Concepts of R; l-objects, R; l-partitions, and R; l-length are described...

متن کامل

Constructions and families of covering codes and saturated sets of points in projective geometry

In a recent paper by this author, constructions of linear binary covering codes are considered. In this work, constructions and techniques of the earlier paper are developed and modified for q-ary linear nonbinary covering codes, q 2 3, and new constructions are proposed. The described constructions design an infinite family of codes with covering radius R based on a starting code of the same c...

متن کامل

On Upper Bounds for Minimum Distances and Covering Radius of Non-binary Codes

We consider upper bounds on two fundamental parameters of a code; minimum distance and covering radius. New upper bounds on the covering radius of non-binary linear codes are derived by generalizing a method due to S. Litsyn and A. Tiett avv ainen 10] and combining it with a new upper bound on the asymptotic information rate of non-binary codes. The new upper bound on the information rate is an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000